From totally nonnegative matrices to quantum matrices and back, via Poisson geometry
نویسنده
چکیده
In this survey article, we describe recent work that connects three separate objects of interest: totally nonnegative matrices; quantum matrices; and matrix Poisson varieties. Mathematics Subject Classification 2000: 14M15, 15A48, 16S38, 16W35, 17B37, 17B63, 20G42, 53D17
منابع مشابه
Totally nonnegative cells and matrix Poisson varieties
We describe explicitly the admissible families of minors for the totally nonnegative cells of real matrices, that is, the families of minors that produce nonempty cells in the cell decompositions of spaces of totally nonnegative matrices introduced by A. Postnikov. In order to do this, we relate the totally nonnegative cells to torus orbits of symplectic leaves of the Poisson varieties of compl...
متن کاملTorus-invariant prime ideals in quantum matrices, totally nonnegative cells and symplectic leaves
The algebra of quantum matrices of a given size supports a rational torus action by automorphisms. It follows from work of Letzter and the first named author that to understand the prime and primitive spectra of this algebra, the first step is to understand the prime ideals that are invariant under the torus action. In this paper, we prove that a family of quantum minors is the set of all quant...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملTotally Positive Density Matrices and Linear Preservers
The intersection between the set of totally nonnegative matrices, which are of interest in many areas of matrix theory and its applications, and the set of density matrices, which provide the mathematical description of quantum states, are investigated. The single qubit case is characterized, and several equivalent conditions for a quantum channel to preserve the set in that case are given. Hig...
متن کاملEla on a Schur Complement Inequality for the Hadamard Product of Certain Totally Nonnegative Matrices
Under the entrywise dominance partial ordering, T.L. Markham and R.L. Smith obtained a Schur complement inequality for the Hadamard product of two tridiagonal totally nonnegative matrices. Applying the properties of the Hadamard core of totally nonnegative matrices, the Schur complement inequalities for the Hadamard product of totally nonnegative matrices is obtained, which extends those of T.L...
متن کامل